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Factor investing is a popular investment strategy adopted by many hedge funds and asset managers. Its
applications span performance breakdown, hedging, asset selection, and portfolio allocation. In this paper,
we aim to provide an overview of two applications of factor investing—Smart Beta and Systematic Factor
Portfolio Construction.

Factors are “attributes” that drive returns of assets. You can theoretically predict the risk and return of a
stock or other asset based on its relationship to a factor or a group of factors. Factor investing simply uses
regression models to analyze this relationship, and the resulting value derived from a regression model
provides insight into an asset's returns. In the regression model, the factor is simply the independent
variable or regressor.

You can think of a factor as a portfolio that has its own return and variation statistics, very much like that
of a stock or investment portfolio. In fact, factors are oftentimes constructed as a portfolio of different
stocks using different asset allocation parameters.

Figure 1: Construction of a twice-tiled factor index (Quality + Value Factors)
Source: MSCI
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Types of Factors

Factors can generally be broken down into style and macroeconomic factors. Style factors relate to the
characteristics of an asset or a company. Some popular style factors include the value factor, momentum
factor, yield factor, and size factor. Macroeconomic factors relate to the effects of macroeconomic forces
on the returns of an asset. This includes interest rates, inflation, GDP growth, and any other relevant
macroeconomic influences on the economy.

Different funds categorize their factors differently. For example, the MSCI’s Barra Global Equity Factor
Model categorizes 16 factors into 8 different factor groups (Figure 10), illustrating how factors could be
derived from measurable characteristics.
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Figure 2: MSCI Factor Categorization
Source: MSCI
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Part I: Factor Construction Models

Multi-Factor Portfolio Construction Decisions
Asset managers are confronted with a set of decisions influencing their approach to constructing
multi-factor portfolios. Some of the choices available could be summarized in the table as follows:

Portfolio
Construction

Variable

Details Consideration

Top-Down vs.
Bottom-Up

Top-Down: Capture exposure to multiple
factors by combining multiple single-factor
indices

Bottom Up: Capture exposure to multiple
factors by selecting securities that score highly
across all factors on average

A Top-Down approach would
provide more diversification
but with a greater chance of
factor dilution. A Bottom-Up
approach would provide higher
factor exposures.

Sector-Neutral vs.
Sector-Agnostic

Sector-Neutral: Stock selection is conducted
independently within each sector to hit a
sector weight target
Sector-Agnostic: Stock selection is conducted
purely by factor score without any sector
constraint

Sector-Neutral strategies would
reduce exposure to unintended
risks, but Sector-Agnostic
strategies would

Rebalancing
Frequency

Reselect and reweight constituent securities on
a regular basis

Trade-off between turnover
costs and factor decay
(Turnover costs are incurred
every time a portfolio manager
trades securities; Factor decay
occurs when factor exposure
decreases over time)

Factor
Combinations

The type and combination of factors Investors can choose to
combine different factors (such
as value and momentum) and
weigh them accordingly

Source: S&P Global, Exploring Techniques in Multi-factor Index Construction

These considerations, among others, influence a portfolio manager’s choice of multi-factor portfolio
strategy. In the following sections, we will delve into a few multi-factor construction models used for
security selection, followed by some portfolio weighting schemes employed in smart beta index
construction.
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Construction Models for Security Selection

Heuristic Construction Parameters

According to NASDAQ’s Practitioner’s Guide to Multi-Factor Portfolio Construction, a Heuristic
Multi-factor approach could be used to derive a comprehensive factor score for a particular security. A
factor score is simply an assigned score based on an assets relationship to a factor or factors. The process
for using a heuristic construction model may follow the below process:

1. Identify the proper factor or factors you want to use in your model.
2. Run a factor regression analysis of every publicly traded company onto your set of factors.
3. For each company, calculate a factor score (there are many different ways to calculate this factor

score.
4. Select the top n assets based on their factor scores and construct a portfolio based on these results.

By deriving a comprehensive factor score for each security within a selected universe of securities, the top
x securities could be selected and fed into a portfolio weighting scheme such as mean-variance to get the
final portfolio allocation weights and develop a systematically adjusted portfolio of assets..

The advantage of a heuristic weighting approach is that it is the most simple to implement. You just have
to run a regression and calculate a “score” based on basic calculations from the result of the regression.
However, this also means that the heuristic approach will have higher tracking errors, may not generate
alpha efficiently, and will have a worse risk adjusted performance–based on tracking error and alpha–than
other methods of factor construction

One such factor score can be calculated using the below formula.

Ɑi = 0.2 * F1,i + 0.2 * F2,i + 0.2 * F3,i + 0.2 * F4,i + 0.2 * F5,i

where Ɑi represents the comprehensive factor score for a security i, while Fi,j represents the factor score of
security i for a factor j.

Another example of constructing the factor score is using the following method based on the information
ratio and normalizing the regression data. This model is based on raw factor scores being normalized such
that their distribution has a mean of 0 and a standard deviation of 1. You do this by calculating the factor
Z-scores. The Z-Score is obtained by the following:

Z = (x – µ)/σ
where x, µ and σ represent the raw factor score, mean factor score, and standard deviation respectively
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Here is an overview of how a factor Z-score could be obtained for a value factor:

A factor Z-score for the value factor could be based off of a security’s Earnings Per Share (EPS). Here,
the author adopts a 5-step process:

Step 1: Obtain the S&P 500 Index Composition over time

Step 2: Process Factor Data
Data sets undergo winsorization and industry neutralization to remove outlying scenarios and remove
differences across industries respectively. After which, data points undergo a standardization process
which is illustrated in Figure 3 below:

- Stock 1 Stock 2

EPS 1.2 15.3

Industry Finance Consumer Goods

Industry EPS Standard 0.8 12.2

Difference +0.4 +3.1

Industry EPS Standard Deviation 0.2 2

Standardized Score 0.4/0.2 = +2 3.½ = +1.5

Figure 3: Standardized score of 2 stocks

Step 3: Calculate the IC and IR to determine the correlation between the factor and next day’s
returns
Information Coefficient (IC): Correlation between the factors and next day’s return. The higher the IC,
the better the factor’s ability to predict next day’s return.

Information Ratio (IR): indicator of the stability of an IC. The higher the IR, the better an IC’s stability;
an acceptable range would be between 0.4 and 0.6; an IR of 1.0 is highly desirable.

The IR can be calculated using the following:

𝐼𝑅 = 𝐼𝐶
𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝐼𝐶

Step 4: Calculate the factor scores
The final factor score for each security could be calculated using the following:

𝐹𝑎𝑐𝑡𝑜𝑟 𝑠𝑐𝑜𝑟𝑒 =
𝑛=1

𝑛𝑜. 𝑜𝑓 𝑓𝑎𝑐𝑡𝑜𝑟𝑠

∑ 𝑓𝑎𝑐𝑡𝑜𝑟
𝑛

× 𝐼𝑅 𝑤𝑒𝑖𝑔ℎ𝑡
𝑛

Step 5: Verify the results
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Factor scores have to be screened for their effectiveness, and this can be done by sorting the securities
in order of their respective factor scores, and splitting them into N different groups. After which, chart
the summation of the daily returns of each group and compare the findings across the different groups
over time. Figure 4 illustrates the ideal outcome, while figure y illustrates a poor factor set. In an ideal
outcome (Figure 4), lines on the graph rarely – if ever – cross over. Figure 5 illustrates a less-than-ideal
outcome.

Figure 4: Ideal Outcome

Figure 5: Poor Outcome

Source: Hsia, M. [Factor Analysis] Vol.4. Use factor score to quantify the growth tendency of stock
return.

Optimized Multi-Factor Construction

In constructing multi-factor portfolios, investors can control the active risk of a portfolio, or the risk
characteristics of an actively managed portfolio relative to a benchmark, through the introduction of a risk
optimization framework.

One approach is active risk, or tracking error minimization. Tracking error, which is a measure of the
divergence between the return profile of a portfolio and its corresponding benchmark, could be calculated
as follows:
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𝑇𝑟𝑎𝑐𝑘𝑖𝑛𝑔 𝐸𝑟𝑟𝑜𝑟 =  𝑣𝑎𝑟(𝑟
𝑝

− 𝑟
𝑏
)

where and represent the return of a portfolio and the return of a benchmark respectively.𝑟
𝑝

𝑟
𝑏

Tracking error is thus indicative of a portfolio’s performance divergence from the benchmark; a positive
tracking error suggests outperformance while a negative one, lagging performance. Traditional passive
fund managers typically aim to minimize tracking error, resulting in fund performance that largely mirrors
that of the benchmark.

While there are many ways in which the tracking error minimization problem could be solved, a challenge
faced by portfolio managers is the minimization of tracking error for a portfolio of a small number of
stocks. As such, this section will be focused on a graduated non-convexity approach to the
cardinality-constrained tracking error minimization problem that introduces a constraint on the total
number of assets, N. Here, a cardinality constraint is one that sets a limit on the number of elements, and
in this case, stocks, within a set or portfolio.

We will adopt the example authored by Henniger, Li and Coleman (2006), which seeks to choose a
portfolio of 25 stocks tracking the S&P500 index given a preallocated portfolio of N stocks, such that

and holdings of the preallocated portfolio could be found in the S&P500.1 ≤ 𝑁 ≤ 500

Let be the weighting of stock in the portfolio, such that , with N being an arbitrary𝑤
𝑖

𝑖 1 ≤ 𝑖 ≤ 𝑁

constant. Three key variables are defined as follows:
1. w represents a vector of weightings of stocks in the preallocated portfolio;
2. x represents a vector of the index weightings of the same set of stocks (S&P500);
3. Q represents the positive definite covariance matrix of stock returns.

We suppose the tracking error function to be the following:

𝑇𝐸(𝑤) = (𝑤 − 𝑥)' 𝑄 (𝑤 − 𝑥)

where is the transpose of(𝑤 − 𝑥)' (𝑤 − 𝑥)

This is a convex function (see below for explanation) and is desirable both in terms of its mathematical
characteristics and interpretability relative to other tracking error functions. A tracking error of 1%
implies an expected tracking portfolio return within with a probability and a tracking error of± 1% 67%

implies an expected tracking portfolio return within with a probability. Notice that2% ± 2% 95%
tracking error is least when .𝑤 = 𝑥

In a basic heuristic algorithm, the optimal portfolio of 25 stocks could be selected by solving a quadratic
programming problem described by Jansen and van Dijk (2002). The first step is to find the best weights,

, in the portfolio that minimizes the tracking error. The initial optimal tracking error would be such that𝑥
𝑖

. In this solution, we remove n stocks with the smallest weights and proceed with another iteration𝑤 = 𝑥
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of the problem using the remaining number of stocks, . This process goes on until we are left with𝑁 − 𝑛
25 stocks. Note that n could represent any number of stocks. While this is a valid example of
optimization, we want to find another way of achieving a similar outcome without having to solve a
potentially prohibitive number of index tracking sub-problems.

The underlying concept behind the tracking error minimization problem subject to a cardinality constraint
is the computation of a global minimum of an objective function. This objective function involves a

function computing the tracking error (see above) as well as a discontinuous counting function ,
𝑖=1

𝑁

∑ Λ(𝑤
𝑖
)

where if , and 0 otherwise.Λ(𝑤
𝑖
) = 1 𝑤

𝑖
≠ 0

In order to overcome various mathematical difficulties of the tracking error minimization problem such as
the lack of differentiability of approximations to the discontinuous function, the authors proposed a
solution that approximates the discontinuous function by a sequence of “continuously differentiableΛ(𝑤

𝑖
)

non-convex piecewise quadratic functions” approaching in the limit.Λ(𝑤
𝑖
)

Here, we will provide a brief explanation of the concepts global minimum, local minimum, non-convex,
and piecewise.

Below illustrates 3 different types of functions. A convex function has one minimum point, a
non-convex function has multiple minimum points, while a concave function has one maximum point.
A global minimum is essentially the smallest possible minimum point, while a local minimum can be
any minimum point on a graph. As such, a convex function has a local minimum that is equal to the
global minimum. This is an important consideration in optimization problems because oftentimes, one
might yield to a solution that is a local minimum and not the global minimum.

Convex Non-Convex Concave

Piecewise functions, on the other hand, are simply functions composed of multiple functions within
fixed boundaries. For instance, we can have a function such that for and𝑓(𝑥)  𝑓(𝑥) = 𝑥  0 ≥ 𝑥 ≥ 1 

for . A piecewise continuously differentiable function could sometimes be 𝑓(𝑥) = 𝑥2  1 > 𝑥 ≥ 2
referred to as a piecewise smooth function.
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On a high level, the tracking error minimization problem subject to a constraint on the total number of
assets, K can be expressed using the following. This is an example of a discontinuous optimization

problem where is the cardinality constraint function.
𝑖=1

𝑁

∑ Λ(𝑤
𝑖
) ≤ 𝐾

𝑚𝑖𝑛 𝑇𝐸(𝑤),  𝑤ℎ𝑒𝑟𝑒 𝑤 ϵ 𝑅𝑛

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 
𝑖=1

𝑁

∑ Λ(𝑤
𝑖
) ≤ 𝐾;  

𝑖=1

𝑁

∑ 𝑤
𝑖

= 1;  𝑤 ≥ 0

For the purpose of simplicity, we adopt the following expression that is of equivalence to the one above:

𝑚𝑖𝑛 (𝑇𝐸(𝑤) + µ
𝑖=1

𝑁

∑ Λ(𝑤
𝑖
)),  𝑤ℎ𝑒𝑟𝑒 𝑤 ϵ 𝑅𝑛 𝑎𝑛𝑑 µ ≥ 0

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 
𝑖=1

𝑁

∑ 𝑤
𝑖

= 1;  𝑤 ≥ 0

is a penalty parameter. The penalty function effectively applies a constraint similar toµ µ
𝑖=1

𝑁

∑ Λ(𝑤
𝑖
)

. By varying , the solution would be able to yield optimal portfolios with different desired
𝑖=1

𝑁

∑ Λ(𝑤
𝑖
) ≤ 𝐾 µ

numbers of assets, K.

The information presented thus far is the basis for understanding the 3-step solution of the tracking error
minimization problem.

Let be a large constant such that and be a monotonically increasing sequence that convergesλ λ > 0 {ρ
𝑘
}

to + .∞

Step 1: We first minimize the tracking error without the cardinality constraint by solving the problem
shown below:

𝑚𝑖𝑛 𝑇𝐸(𝑤),  𝑤ℎ𝑒𝑟𝑒 𝑤 ϵ 𝑅𝑛

;𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 
𝑖=1

𝑁

∑ 𝑤
𝑖

= 1 𝑤 ≥ 0

Given the convexity of the tracking function, if we have a solution that also satisfies𝑤 *
𝑖=1

𝑁

∑ Λ(𝑤
𝑖

*) ≤ 𝐾

, then the proposed method is guaranteed to yield solution that satisfies the cardinality constraint𝑤 *
because the local minimum is the global minimum.

Step 2: Compute a solution to the following problem, , using the solution of the approximation as𝑃
𝑘

𝑃
𝑘−1

a starting point. The following equations describe the approximation problem, :𝑃
𝑘

𝑚𝑖𝑛 (𝑇𝐸(𝑤) + µ𝑚𝑎𝑥(
𝑖=1

𝑁

∑ 𝑔
λ
(𝑤

𝑖
;  ρ

𝑘
) − 𝐾,  0)),  𝑤ℎ𝑒𝑟𝑒 𝑤 ϵ 𝑅𝑛
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;𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 
𝑖=1

𝑁

∑ 𝑤
𝑖

= 1 𝑤 ≥ 0

Brief derivation of 𝑚𝑖𝑛 (𝑇𝐸(𝑤) + µ𝑚𝑎𝑥(
𝑖=1

𝑁

∑ 𝑔λ(𝑤
𝑖
;  ρ

𝑘
) − 𝐾,  0))

Recall from above the introduction of the penalty parameter, , resulting in the following equation:µ

.𝑚𝑖𝑛 (𝑇𝐸(𝑤) + µ
𝑖=1

𝑁

∑ Λ(𝑤
𝑖
))

We want to find a series of approximations . We first begin by finding a solution that{𝑃
𝑘
}

𝑘=1,2,...
minimizes the tracking error globally without non-convexity from the cardinality constraint, which is
effectively what step 1 aims to achieve. This gives us solution , which is used as starting point for the𝑃

1
approximation problem . Here, we gradually introduce non-convexity to incorporate the cardinality𝑃

2
constraint, such that solution is used as starting point for the approximation problem .𝑃

𝑘−1
𝑃

𝑘

To achieve this, we will need to approximate the counting function with continuouslyΛ(𝑤
𝑖
)

differentiable piecewise quadratic functions with graduated non-convexity, which is achieved via two
steps outlined below.

(i) We first approximate the discontinuous counting function using a continuous function :Λ(𝑤
𝑖
) ℎ

λ
(𝑤

𝑖
)

ℎ
λ
(𝑤

𝑖
) = λ𝑧2 𝑖𝑓 |𝑤

𝑖
| ≤ 1

λ ;  ℎ
λ
(𝑤

𝑖
) = 1 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

is a large constant and is used in image reconstruction by Blake and Zisserman (1987), theλ > 0
details of which shall not be elaborated here. This gives us a continuous but non-differentiable problem
given by the following:

𝑚𝑖𝑛 (𝑇𝐸(𝑤) + µ
𝑖=1

𝑁

∑ ℎ
λ
(𝑤

𝑖
)),  𝑤ℎ𝑒𝑟𝑒 𝑤 ϵ 𝑅𝑛 𝑎𝑛𝑑 µ ≥ 0

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 
𝑖=1

𝑁

∑ 𝑤
𝑖

= 1;  𝑤 ≥ 0

(ii) In this second step, we approximate the continuous, non-differentiable function usingℎ
λ
(𝑤

𝑖
)

:𝑔
λ
(𝑤

𝑖
; ρ)

𝑔
λ
(𝑤

𝑖
; ρ) = λ𝑤

𝑖
2 𝑖𝑓 |𝑤

𝑖
| ≤ 𝑞;  

;𝑔
λ
(𝑤

𝑖
; ρ) = 1 − ρ

2 (|𝑤
𝑖
| − 𝑟)2𝑖𝑓 𝑞 ≤ |𝑤

𝑖
| < 𝑟

𝑔
λ
(𝑤

𝑖
; ρ) = 1 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Note that q and r are 2 bounds such that and𝑟 = 2
ρ + 1

λ 𝑞 = 1
λ𝑟

10



Paragon National Group

Given , a monotonically increasing sequence introduced above, we find that as increases,{ρ
𝑘
} ρ

𝑘

curvature of becomes more negative, which introduces a graduated nonconvexity.𝑔
λ
(𝑤

𝑖
; ρ)

As such, we now find that the discontinuous counting function could be approximated using aΛ(𝑤
𝑖
)

continuous, differentiable function as shown below:𝑔
λ
(𝑤

𝑖
; ρ)

𝑚𝑖𝑛 (𝑇𝐸(𝑤) + µ
𝑖=1

𝑁

∑ 𝑔
λ
(𝑤

𝑖
; ρ))

Finally, recall from above that adjustments to the penalty parameter would yield different values of K.µ
Because a portfolio manager wants to obtain a portfolio with an upper bound K as input, the
optimization problem could be adjusted for a more direct way of obtaining the desired solution:

𝑚𝑖𝑛 (𝑇𝐸(𝑤) + µ 𝑚𝑎𝑥(
𝑖=1

𝑁

∑ 𝑔
λ
(𝑤

𝑖
; ρ

𝑘
) − 𝐾, 0))

Note that we use the max(a, b) where to ensure that output values are greater than 0.𝑎, 𝑏 ϵ 𝑅

Step 3: Terminate the iteration if or . Otherwise, we return to step 1 to find the(𝑥
𝑖
)

𝑘
≤ 𝑞

𝑘
(𝑥

𝑖
)

𝑘
≤ 𝑟

𝑘

solution of the approximation at .𝑃
𝑘+1

Solving this tracking error minimization problem would effectively yield a tracking portfolio of desired
size.

Principal Component Analysis (PCA)
The key idea underlying a principle component analysis (PCA) is that five-factor models are not perfect
ways to explain risk (Katchova, A., 2013). The PCA thus derives a set of empirically-driven and
uncorrelated factors with no predefined factor scores that achieve maximum variance.

Mathematically, a PCA serves to find a set of factors z = [z1 , z2 , z3 , … zn], which are a set of linear
combinations u = [u1 , u2 , u3 , … un] of original variables x = [x1 , x2 , x3 , … xn] such that maximum
variance is obtained.

1. The first factor, z1, explains the maximum possible variance while the succeeding component, z2,
(that is uncorrelated to the first factor) explains any maximum possible variance not captured by
the first. Each succeeding factor (z3 , z4 , etc.) then adopts a similar relationship to its preceding
factor.

2. An eigenvalue decomposition of a sample correlation matrix, R, would allow one to obtain the
solution, which is a set of eigenvectors as well as their accompanying eigenvalues.

3. The eigenvalues represent the importance of the component in explaining risk. Generally, an
eigenvalue of less than 1 is considered to be less significant. Figure 6 (below) illustrates the
retention of factors whose Eigenvalues are above 1.

4. Finally, the factor loadings, F are the correlations between x and z, and are denoted by:
F = corr (x, z) = uD1/2, where D is the diagonal covariance matrix of the factors, z
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Figure 6: A plot of each succeeding factor’s eigenvalue
Source: Katchova, A., Principal Component Analysis and Factor Analysis.

Figure 7: Example of a correlation table between 4 securities
Source: Yang, Libin., An Application of Principal Component Analysis to Stock Portfolio Management.

When PCA is applied to a set of n securities, we can expect n uncorrelated sources of risk inherent to the
original set of data. As above, the eigenvalues of each succeeding principal component decreases
exponentially and become less relevant sources of risk (Yang, Libin., 2015). The top few eigenvectors
selected are major contributors to risk.

The PCA could also be applied on a list of factors to identify the most important factors contributing to a
winning stock. Hargreaves and Mani’s The Selection of Winning Stocks Using Principal Component
Analysis adopted the PCA to narrow a list of 22 identified factors (using fundamental and financial data)
to 2 key factors that explain 94.3% of the variance of total returns from an identified set of securities.
Securities are then evaluated based on the 2 identified leading factors.
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Part II: Smart Beta and Portfolio Weighting Schemes

Smart Betas are defined as “transparent, rules-based portfolios designed to provide exposure to specific
factors, market segments, or systematic strategies” (Russell Investments, 2015). There are two
fundamental types of smart beta – strategy-based and factor-based. Strategy-based smart betas place a
weighting emphasis on company fundamentals such as sales, dividends or average five-year cash flows.
Factor-based smart betas, on the other hand, base their selections on particular stock characteristics (such
as volatility).

Here, we examine how a set of pre-selected securities could be weighted. In many of the illustrated
indexes, securities are typically placed under an initial screen from a universe before their constituent
weights are determined by a weighting scheme.

Alternatively Weighted Indexes
Alternatively weighted indexes as designed by FTSE Russell enable investors to “target specific
investment objectives” such as risk reduction. In this section, a few types of weighting schemes will be
demonstrated via an overview of some alternatively weighted indexes.

(i) Equally Weighted Index
An index where capital is allocated equally across all constituent securities.

(ii) Equal Risk Contribution (ERC) Index
The ERC Index weights all eligible securities by equalizing the risk contribution of each security (MSCI,
2017). The MSCI Europe ERC Index derives the ex-ante risk estimate from the GEM25 Barra Equity
Model, where

RCi = wi * M C Ri

and RCi , wi and MCRi represent the Risk Contribution, weight, and Marginal Contribution to the Index
Risk of a security i respectively

(iii) Minimum Variance Weighting Scheme
There are a few approaches to volatility reduction. The first alternative is a risk-weighted approach, where
indexes are weighted according to the inverse of their historical volatilities, where a security with a higher
volatility is assigned a lower weight. A second approach is the construction of a low volatility factor
index that aims at capturing the factor premia of low volatility securities.

According to FTSE Russell (2017), the minimum variance index outperforms its counterparts and adopts
an optimization approach that minimizes a portfolio’s variance. The methodology for the FTSE Russell
Global Minimum Variance Index Series could be outlined in the following steps:

Step 1: The equation that models the long-only portfolio variance is as follows:
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σ2 = WT C W
where W is the vector of stock weights, C is the covariance matrix, and WT is the transpose of the W
matrix

Step 2: Set appropriate constraints, such as the industry and country weights

Step 3: Run the optimization, which is an iterative process that aims to arrive at a better outcome with
each step

(iv) Risk Efficient Index
Risk efficient indexes obtain the optimal security weightings via maximizing the expected Sharpe Ratio,
which requires a security’s (i) expected return in excess of risk-free rate and (ii) covariance matrix of its
expected returns.

In constructing a Risk Efficient Index, the constitution used to obtain the efficient weights is the same as
that of a cap-weighted index (Amenc, Goltz & Martellini, 2010).

The efficient weights is then a set of weights that result in the highest Sharpe ratio, and may be obtained
by the following:

where µ represents a vector of expected returns in excess of the risk free rate, and Σ is the covariance
matrix for returns of each of the constituent securities

The vector of expected returns are based on risk/return estimations, while the covariance matrix is
estimated using the principal component analysis – which we will not elaborate on for the purpose of
simplicity.

The optimization problem above then yields a solution modeled by the following (FTSE Russell, 2022):

w* = m Σ-1 µ
where m is a scalar that ensures all constituent weights sum up to 1

The solution above thus yields a set of optimal weights that determine the final weights of constituent
securities in the FTSE EDHEC-Risk Efficient Index Series (EIC), which is a poignant example of a Risk
Efficient Index.

(v) Fundamental Indexes
Securities in fundamentally weighted indexes are weighted according to a variety of fundamental
properties such as book value, revenue or earnings. Securities are typically placed under an initial screen
to weed out undesirable characteristics, followed by a weighting system to determine their constituent
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weights. For the purpose of illustration, we will examine WisdomTree U.S. Dividend Indexes’
Methodology.

Firstly, companies are placed under an initial screening criteria, such as a minimum market capitalization
of $100 million and other exclusions, including preferred stocks, exchange traded funds and derivative
securities. A weighting formula then aims to magnify the effects dividends play in an index’s total returns.

The weighting factor, which is the cash dividends to be paid, is determined by the reported annual
dividend per share multiplied by the common shares outstanding. Each constituent security’s weight is
then determined by its share of contribution to the total dividend stream estimated to be paid in the
succeeding year. Other adjustments are being made for securities with a share exceeding 12%.

Multi-Factor Composite Approach
A Multi-Factor Composite Index provides exposure to multiple factors via a simple composition of
multiple single-factor indexes. For instance, a simple, two-factor composite index could consist of 50%
value and 50% volatility. A constraint of adopting this approach, however, is that this average process
potentially dilutes exposures to the factors of interest.

Below illustrates two types of hypothetical single-factor index construction using three different
securities:

Figure 8: Construction of a quality index using an arbitrary quality score
Source: FTSE Russell. (2017). Multi-factor indexes: The power of tilting

Figure 9: Construction of a value index using an arbitrary value score
Source: FTSE Russell. (2017). Multi-factor indexes: The power of tilting

The creation of a composite two-factor (in this instance, quality & value) index using the normalized
weights of its constituent factor indexes is illustrated below:
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Figure 10: Construction of a two-factor composite index
Source: FTSE Russell. (2017). Multi-factor indexes: The power of tilting

Sequential Tilt Approach
“Factor tilting” is the sequential application of factor tilts that results in an index that is first tilted towards
a factor, followed by another (FTSE Russell, 2017).

The factor weight of a security in a single-tilt portfolio could be obtained by the following formula:

for an underlying index universe U, with underlying index weights Wi and the standard cumulative normal
distribution function of the cross-sectional Z-Scores for a given factor be represented by Si

Figures 11 and 12 below illustrates the construction of a single-tilt factor index using the above formula:

Figure 11: Construction of a single-tilt factor index (Quality Factor)
Source: FTSE Russell. (2017). Multi-factor indexes: The power of tilting

Figure 12: Construction of a single-tilt factor index (Value Factor)
Source: FTSE Russell. (2017). Multi-factor indexes: The power of tilting
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The factor weight of a portfolio in a twice-tilted index is thus given by:

where S1i and S2i represent the standard cumulative normal distribution function of the cross-sectional
Z-Scores for given factors 1 and 2 respectively

Figure 13: Construction of a twice-tiled factor index (Quality + Value Factors)
Source: FTSE Russell. (2017). Multi-factor indexes: The power of tilting

Double Sort Approach
The double sort procedure involves first constructing quantile portfolios where securities within the
universe are being ranked according to the first factor characteristic. Securities within the first quartile are
then reconstructed into quantile portfolios according to their respective scores relating to the second factor
characteristic. The downside, however, would be a higher tracking error relative to a cap-weighted
benchmark.
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Part III: An Assessment of Factor Exposure

Once portfolios are being constructed, they could be assessed to identify their exposure to a specific factor
of interest.

General Approach
The first approach to assessing a portfolio’s factor exposure involves a summation of the portfolio’s
constituent security weights, each being multiplied by its respective Z-score as illustrated by the following
(FTSE Russell, n.d.):

where X represents the exposure of the portfolio to a factor of interest with Wj and Zj being the index
weight and Z-score of a security, j respectively

From here, one can derive the active factor exposure by taking the difference between the factor exposure
of the target index and the factor exposure of the underlying index.

A returns based analysis can also be used to assess factor exposure. Excess returns of a portfolio are
regressed against the returns of a single-factor portfolio to obtain the beta regression coefficients, which
represent factor exposure.

Factor exposure is best determined using the first method as opposed to the second method when holdings
based information is available as it is relatively unambiguous and allows an investor to derive the factor
exposure at a specific point in time (FTSE Russell, n.d.). In contrast, the regression method presents
multiple problems. One example would be the issue of selecting a time period that captures a variety of
market conditions to eliminate bias.

Examples
In this section, we will provide a few examples of the active factor exposure of a few alternatively
weighted indices. The capitalization weighted index is the underlying index.

(i) Factor indexes

The average active exposure of an index relative to a factor deviates from zero if the index exhibits the
characteristics of the factor. Figure 14 clearly depicts this mathematical relation.
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Figure 14: Average active exposure of different factor indexes
Source: FTSE Russell, Factor exposures of smart beta indexes

(ii) Equally weighted indexes

Figure 15 (below) provides the average active exposure (Sep 2001 to Jul 2015) of the equally weighted
index to 5 different factors of interest—illiquidity, 12-month momentum, quality, size, value and volatility
(low).

Figure 15: Average active exposure of an equally weighted index
Source: FTSE Russell, Factor exposures of smart beta indexes

In this example, the equally weighted index has a positive exposure to the illiquidity and size factors, and
a negative exposure to the (low) volatility factor—which implies a volatility that is higher than the
underlying index. The results of this analysis is largely expected because the equally weighted index
overweights small capitalization stocks relative to the capitalization weighted index. Since stocks with a
smaller market capitalization are typically less liquid and exhibit higher volatility, the average active
exposure for these factors will deviate sizably from zero.

(i) Risk-based indexes

Here, we will provide examples of active factor exposure over time for some risk-based indexes.
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Figure 16: Active Size Exposure
Source: FTSE Russell, Factor exposures of smart

beta indexes

Figure 17: Active Volatility Exposure
Source: FTSE Russell, Factor exposures of smart

beta indexes

Figure 18: Average active exposure of FTSE Risk Indexes (Sep 2001 to Jul 2015)
Source: FTSE Russell, Factor exposures of smart beta indexes
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Conclusion

In this paper, we have provided multiple examples of factor investing, which aim to improve portfolio
performance by targeting specific drivers of return. These factors have been broadly categorized into
macroeconomic drivers—which explain risk and return across asset classes—and style drivers—which
explain risk and return within each asset class.

In practice, factor performance is largely cyclical. Portfolios allocated to value and low-size factors tend
to outperform during times of economic expansion while portfolios allocated to quality and min vol
factors exhibit superior performance during times of economic contraction. Some portfolio managers thus
base their reallocation decisions on the existing economic outlook to maximize returns.

Factor investing remains a highly competitive field. Some areas of research include the application of
factor investing methodology to fixed income assets, ESG investing and factor tilts, increased active
management of factor exposure as well as improved ways of measuring factor exposure. Leading firms
thus leverage on such proprietary research to optimize existing methodologies and improve outcomes for
their clients.
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